Symbology comparison of Two-dimensional Symbologies with focus on EDI messages on transport labels

rev. 2007-10-22

Symbology comparison of Two-dimensional Symbologies with focus on EDI messages on transport labels

Symbologies being compared: PDF 417, Aztec, QR, Data Matrix

Summary:

The comparison undertaken below proofs that two-dimensional symbols perform in a comparable manner if the parameters are set to produce comparable results:

- If symbology parameters are set for comparable space consumption, the reading distances become nearly the same for any of the tested codes.
- If symbology parameters are set for same smallest dot size, size of matrix codes gets reasonably smaller than for a stacked PDF 417 but reading distances for the matrix codes gets lower as well.

Additionally the test results show, that different scanning devices perform differently according its optics and decoding software.

In essence, the choice of the 2D symbology does not influence the scanning performance to a major extend if the parameters are set in a comparable manner. Where the symbol parameters enable the basic features the choice of the scanners is decisive for the final performance of an application.

The study below will illustrate the performance of 4 different 2 d -dymbols and a variety of different image scanners. Laser scanners have not been considered because laser scanner do not perform for matrix type codes regularly.

Any input for completion and potential update of the study is appreciated.
Contact: Heinrich.Oehlmann@Eurodatacouncil.org

Symbology comparison of Two-dimensional Symbologies with focus on EDI messages on transport labels

1 Introduction

Two-dimensional symbols are in use for small data elements but also for carrying complete messages as used in B2B communication via EDI. Code PDF 417 w as introduce in the $90^{\text {th }}$ as the optimum code for long messages but experiences have been made w ith other symbologies as well in different applications in the meantime. The study shall supply answ ers to questions how the different symbologies may perform carrying an UNEDIFACT message with transport information. The study was specifically required by DHL World Wide Net for updating purposes. Since some of the 2D-Symbols have been considered for use in transport environment by the ISO 15394 Transport Label, some not, the study shall be submitted to the ISO 15394 maintenance committee as well. The study w as prepared by the TC of Eurodata Council in co-operation with experts of AIM-Germany and DIN NA043-01-31AA. The target of the study is to get a picture about the performance of the different symbologies but not to be used for selection of scanning products. The scanners chosen for the test have been selected stochastically not on specific purposes, but the samples printed may be used for comparison w ith other scanner in the market. Contact for questions and input for potential updates: Heinrich.Oehlmann@Eurodatacouncil.org

Selected 2D Symbols for comparison

As symbologies the follow ing codes have been selected, being in use widely and performing for global use

- PDF417
- Aztec
- QR
- Data Matrix

Criteria for use on a transport label

1. What is the possible reading distance for each of these codes, assuming the same resolution/space is used?
2. What is the minimum vertical space consumption for a message of maximum size, on a label w ith a width of 10 to 11 cm ?
3. We w ould like to know the average decoding time for each 2D code per scanner type, both in single-code mode and if configured to read all 4 codes alternatively?
4. Where is each of these symbologies primarily in use today?
5. To which extent is each of these symbologies standardised globally?
6. What are further relevant constraints, strengths and w eaknesses per symbology?
7. We also need to know how sensitive each of the codes is to single dot failures, print head dot failures (vertical white lines) and general dirt coverage or damages.

Beyond that, the dependency on different barcode reader technologies (laser scanner, image scanner), and the costs associated with it shall be addressed.

Common symbology parameters and settings for this 2D-study

- Reference data string encoded in conformity to ISO 15434 Transfer Syntax.

```
Format header "02" for full UNEEDIFACT messages is used.
    [)><RS>02
    UNH+67231540+IFTMIN:D:96B:UN+DHL3.1.1/OPSETE32'
    BGM+787+A9272109+9'
    DTM+186:20010123:102'
    TSR+ZCD:153+Z01+02'
    MOA+22:1960.00:EUR'
    TOD+Z01++CPT
    NAD+OS+08927437'
    NAD+CN+++MARANS SYSTEMVIEW AG+BUNDESKANZLERPLATZ:2:-
    10+BONN++53113+DE
    GID+0+1'
    MEA+WT++KGM:45'
    PCl+ZZ1+JD00001123451234567'
    UNT+12+67231540'
    <RS><EOT>
```

- X-dimension: Smallest Dot size for the selected symbols: $15 \mathrm{mil} / 0,38 \mathrm{~mm}$ per dot for 200 dpi printers but 13mil / 0,33mm per dot (300dpi printer) but upw ard adjusted dot size for the matrix codes for the comparison by space.
Specific parameter for the stacked PDF417: Horizontal to vertical bar ratio1 to 3
- Error correction levels:
-PDF417: error correction level 4 of 8
-Aztec: automatic setting
-QR: error correction level 2of4, 3of4
-Data Matrix: automatic setting

2 Questions and answers

2.1 What is the possible reading distance?

Answer: Table 1 shows comparable scanning performance depending on the scanning device used and in case of comparable symbol sizes.
The tests using same dot size result in smaller space for matrix symbols of approx. $\mathbf{2 5 \%}$ but also smaller reading distances of $\mathbf{2 5 \%}$ in average. See details below.

2.1.1 Comparison of symbols with equalized space consumption (200dpi)

To reach nearest comparable symbol size the matrix codes have been printed with $\mathrm{X}=$ $30 \mathrm{mi} / 0,76 \mathrm{~mm}$ per dot.
Symbol parameter setting for 200 dpi printers:

- PDF 417 w ith smallest Dot size of $15 \mathrm{mil} / 0,375 \mathrm{~mm}$ per dot, horizontal to vertical: 1 to 3
- Matrix Codes adjusted closely to the size 2695 sqmm of PDF 417 w ith dot size 15 mil using 30 mil for the Matrix Codes.

Table 1 Reading distances (cm) with symbols of comparable sizes achieved by different scanners

symbology square mm	EMAH 120	EMAH 200	EMS1690	OPI2002	HP4410 LR	Fixmount HF CCD	
PDF 417, 2695	24	39	35	22	24	120	
Aztec, 1849	24	38	30	23	27	120	
QR, sec 2, 2401	22	39	30	27	28	120	
QR, sec 3, 3364	22	39	30	27	28	120	
DataMatrix, 2401	22	41	30	25	26	120	

Samples of symbols adjusted to the size of the PDF 417 sample

PDF417,15mil, 35x77mm (2695sqmm)

Aztec $30 \mathrm{mil}, 43 \times 43 \mathrm{~mm}$ (1849 sqmm)

QR 30 mil, $49 \times 49 \mathrm{~mm}$, sec. standard 2401 sqmm ${ }_{5}$ Datamatrix $30 \mathrm{mil}, 49 \times 49 \mathrm{~mm}$ (2401 sqmm)

2.1.2 Comparison of scanning distances with symbols of equal dot size of 15 mil

Matrix symboles of 15 mil become about 25% of the size of a PDF 417 but reading distances get approx. 25% less.
See table 2 and illustrations below .
Parameter setting for 200dpi printers

- Smallest Dot size: $15 \mathrm{mil} / 0,38 \mathrm{~mm}$ per dot (200dpi), PDF 417: X horizontal to vertical: 1 to 3
- Error correction levels:
-PDF417: error correction level 4 of 8
-Aztec: automatic setting
-QR: error correction level 2 of 4
-Data Matrix: automatic setting
Table 2 Reading distances (cm), assuming the same resolution of $15 \mathrm{mil} / 0,38 \mathrm{~mm}$ per dot is used for each of the codes

symbology X=15mil	EMAH 120	EMAH 200	EMS1690	OPI2002	HP4410 LR	Fixmount HF CCD	
PDF 417	24	39	35	21	24	120	
Aztec	17	29	17	15	16	90	
QR, sec 2	16	29	18	18	16	90	
Data Matrix	16	29	19	17	16	90	

Samples of the 4 selected symbologies w ith equal dot size of $15 \mathrm{mi} / 0,38 \mathrm{~mm}$ per dot

Aztec
22x22mm/484sqmm 20% of PDF4 417

PDF 417, 15mil
$70 \times 35 \mathrm{~mm} / 2450$ sqmm

QR, Sec. level 2 - standard
$24 \times 24 \mathrm{~mm} / 576 \mathrm{sqmm}$ 24% of PDF 417

Data Matrix $24 \times 24 \mathrm{~mm}$ $24 \times 24 \mathrm{~mm} / 576 \mathrm{sqmm}$ 24% of PDF 417

2.1.3 Comparison scanning distances with symbols of equal dot size of 13 mil

Matrix symboles of 13 m il become about 17% of the size of a PDF 417 but reading distances get approx. 30\% less in average.
See table 3 and illustrations below .
Parameter setting for 300dpi printers

- Smallest Dot size for the selected symbols: $13 \mathrm{mil} / 0,33 \mathrm{~mm}$ per dot (300dpi printer) Additional parameter for the stacked PDF417-Horizontal to vertical: 1 to 3
- Error correction levels:
-PDF417: error correction level 4 of 8
-Aztec: automatic setting
-QR: error correction level 2 of 4
-Data Matrix: automatic setting
Table 3 Reading distances (cm), assuming the same resolution of $13 \mathrm{mil} / 0,33 \mathrm{~mm}$ per dot is used for each of the codes?

symbology	EMAH 120	EMAH 200	EMS1690	OPI2002	HP4410		
PDF 417	25	37	29	21	24		
Aztec	17	27	16	15	16		
QR	19	27	17	18	16		
Data Matrix	12	27	19	17	16		

Samples of the 4 selected symbologies
w ith equal dot size of $13 \mathrm{mi} / 0,33 \mathrm{~mm}$ per dot

PDF 417
$70 \times 40 \mathrm{~mm} / 2800$ sqmm

QR sec. level 2
22x22mm/484 sqmm
17% of PDF417

Data Matrix

2.2 What is the minimum vertical space consumption for a message of maximum size, on a label with a width of 10 to 11 cm ?

Table 4 Space consumption

symbology	printing parameters $\mathrm{X}=13 \mathrm{mil}$ 300 dpi	printing parameters PDF $417 \mathrm{X}=15 \mathrm{mil}$ 200 dpi	printing parameters PDF $417 \mathrm{X}=15 \mathrm{mil}$ but Matrix codes 30mil
	symbol height \times length	symbol height \times length	symbol height \times length
PDF 417	$30 \mathrm{~mm} \times 70 \mathrm{~mm}$	$35 \mathrm{~mm} \times 70 \mathrm{~mm}$	$35 \mathrm{~mm} \times 70 \mathrm{~mm}$
Aztec	$20 \mathrm{~mm} \times 20 \mathrm{~mm}$	$22 \mathrm{~mm} \times 22 \mathrm{~mm}$	$43 \mathrm{~mm} \times 43 \mathrm{~mm}$
QR, sec 2	$22 \mathrm{~mm} \times 22 \mathrm{~mm}$	$24 \mathrm{~mm} \times 24 \mathrm{~mm}$	$49 \mathrm{~mm} \times 49 \mathrm{~mm}$
Data Matrix	$22 \mathrm{~mm} \times 22 \mathrm{~mm}$	$24 \mathrm{~mm} \times 24 \mathrm{~mm}$	$49 \mathrm{~mm} \times 49 \mathrm{~mm}$

2.3 We would like to know the average decoding time for each 2D code per scanner type, both in single-code mode and if configured to read all 4 codes alternatively.

Table 5 Average decoding time for each 2D code per scanner type, both in single-code mode and if configured to read all 4 codes alternatively or linear codes.

sym bology	single code setting	all code setting \& linear
	time for 10 scans each	time for 10 scans each
PDF 417	$4,5 \mathrm{sec}$	5 sec
Aztec	$6,5 \mathrm{sec}$	7 sec
QR	$5,5 \mathrm{sec}$	6 sec
Data Matrix	$5,5 \mathrm{sec}$	6 sec

Note: As scanner one of the other test models w as selected only, because the test shall show the relation of the decoding time betw een a single code setting and "all codes setting" but shall not test different softw are performances. But the table may be used for comparison w ith other scanners as well.

2.4 Where is each of these symbologies primarily in use today?

Table 6 show s a selection of areas where each of these symbologies are in use today primarily

symbology	Direct Marking	Product Labelling	Transport Labelling	domains
PDF 417		+	++	automotive, electronics
Aztec				Ticketing, special in house applications
QR	+	+	+ (Asia)	automotive, health care, special applic.
Data Matrix	++	++	+	industry \& health care

EURODATA COUNCIL

2.5 To which extent is each of these symbologies standardised globally?

The selected symbologies are recognised by the ISO/IEC committee JTC 1/SC 31 and its national normalisation bodies. The references for access to the specifications are:

- PDF417 ISO/IEC 15438
- Aztec ISO/IEC spec. in preparation w ithin ISO/IEC JTC 1/SC 31/WG 1
- QR ISO/IEC 18004
- Data Matrix ISO/IEC 16022

2.6 What are further relevant constraints, strengths and weaknesses per symbology?

Table 7

symbology	constrains	strength	weakness
PDF 417	2D scanner	Linear scanners available, read. distance	large size
Aztec	Image scanner	no quiet zone around symbol	new for many
QR	Image scanner	w ide usage in ASIA	
Data Matrix	Image scanner	w ide usage US and Europe	

2.7 Sensitivity for each of the codes is to single dot failures, print head dot failures (vertical white lines) and general dirt coverage.

2.7.1 Spot damages and print head failure

Table 8 Spot damages nor single line print head failures cause cause problems

sym bology	a) spot damage	b) print head failure (vertical				
lines)			$	$	read	
:---	:---:					
PDF 417						
Aztec						
QR						
read						
read						
read						

7.1 Spot damage and print head failuer used for the test

PDF 417

Aztec

QR

Data Matrix

2.7.2 7.2 Test: Area damages

7.2.1 Area damage simulation level A: Every tested scanner reads every code

Table 9 show s no reading problems in case of illustrated area damages

symbology	EMAH 120	EMAH 200	EMS1690	OPl2002	HP4410 LR	Fixmount HF CCD	
PDF 417	YES	YES	YES	YES	YES	YES	
Aztec	YES	YES	YES	YES	YES	YES	
QR, sec 2	YES	YES	YES	YES	YES	YES	
QR, sec 3	YES	YES	YES	YES	YES	YES	
Data Matrix	YES	YES	YES	YES	YES	YES	

Samples from for damage simulation level A:
Parameters for 200dpi printers 15 milfor PDF 41730 mil for the matrix codes

PDF 417 sec . level 4 of 8

QR, sec. level standard (2 of 4)

Aztec

Data Matrix

2.7.3 Test: Area damage simulation level B

Table 10 show s some reading problems in case of area damages C

symbology	EMAH 120	EMAH 200	EMS1690	OPI2002	HP4410	Fixmount	
PDF 417	YES	YES	YES	YES	NO	YES	
Aztec	NO	NO	NO	NO	YES	YES	
QR, sec 2	YES	YES	YES	NO	YES	YES	
QR, sec 3	YES	YES	YES	YES	YES	YES	
Data Matrix	YES	YES	NO	YES	NO	YES	

Samples with area damage simulation level B used for the test:

PDF 417 sec . level 4 of 8

QR, sec. level Standard (2 of 4)

Aztec

Data Matrix

2.7.4 Test: Area damage simulation level C

Table 11 show s some reading problems in case of area damages C

symbology	EMAH 120	EMAH 200	EMS1690	OPl2002	HP4410	Fixmount	
PDF 417	YES	YES	YES	YES	NO	YES	
Aztec	NO	NO	NO	NO	NO	NO	
QR, sec 2	NO	NO	NO	NO	NO	NO	
QR, sec 3	YES	YES	YES	YES	YES	YES	
Data Matrix	NO	NO	NO	NO	NO	NO	

Samples with area damage simulation level B used for the test:

3 Annex Scan diagnostic

The diagnostic screen below shows the data content of the symbols. It show s the conformity to ISO/IEC 15434 Syntax for High Capacity Media

4 Annex Selection of scanners

Dependency on different barcode readers and the costs associated.
Table 12 Selection of reading devices (to be completed)

SCANNER	market price (€URO)	for the test prepared by	Laser/ Imager	linear Barcode	PDF $\mathbf{4 1 7}$	Aztec	QR	Data Matrix
EMAH120	$450,-$	*ELMICRON	Imager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
EMAH200	$800,-$	*ELMICRON	Imager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
EMS1690	$450,-$	*ELMICRON	Imager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
OPI2002	$450,-$	OPTICON	Imager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
HP4410 LR		HHP	Imager	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fixmount	$4.200,-$	ACCUSORT	Camera	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

[^0]
[^0]: *ww.emicron.de

